Rabu, 28 Agustus 2019

MATERI VEKTOR PERTEMUAN KEDUA KELAS X IPA 1


PERTEMUAN KEDUA
B. Penjumlahan Vektor Menggunakan Metode Grafis dan Analitis
Pernahkah Anda membayangkan jika Anda berenang di sungai searah dengan aliran sungai, kemudian Anda tiba-tiba berbalik arah 90° dari arah pergerakan semula? Apakah posisi terakhir Anda tepat sesuai keinginan Anda? Tentu tidak, arah akhir posisi Anda tidak akan membentuk sudut 90° dari posisi semula karena terdapat hambatan arus sungai yang membuat arah gerak Anda tidak tepat atau menyimpang. Anda dapat menentukan posisi akhir Anda dengan cara menjumlahkan vektor gerak Anda, baik perpindahannya maupun kecepatannya. Apakah Anda mengetahui cara menjumlahkan dua buah vektor?
Penjumlahan vektor tidak sama dengan penjumlahan skalar. Hal ini karena vektor selain memiliki nilai, juga memiliki arah. Vektor yang diperoleh dari hasil penjumlahan beberapa vektor disebut vektor resultan.
Berikut ini akan dibahas metode-metode untuk menentukan vektor resultan.
1. Resultan Dua Vektor Sejajar
Misalnya, Anda bepergian mengelilingi kota Palu dengan mengendarai sepeda motor. Dua jam pertama, Anda bergerak lurus ke timur dan menempuh jarak sejauh 50 km. Setelah istirahat secukupnya, Anda kembali melanjutkan perjalanan lurus ke timur sejauh 30 km lagi. Di lihat dari posisi asal, Anda telah berpindah sejauh sejauh 50 km + 30 km = 80 km ke timur. Dikatakan, resultan perpindahan Anda adalah 80 km ke timur. Secara grafis, perpindahan Anda seperti diperlihatkan pada Gambar 3.

Sedikit berbeda dengan kasus tersebut, misalnya setelah menempuh jarak lurus 50 km ke timur, Anda kembali lagi ke barat sejauh 30 km. Relatif terhadap titik asal, perpindahan Anda menjadi 50 km – 30 km = 20 km ke timur. Secara grafis, perpindahan Anda diperlihatkan pada Gambar 4.

Dari kedua contoh, seperti yang diperlihatkan pada Gambar 3. dan Gambar 4, menjumlahkan dua buah vektor sejajar mirip dengan menjumlahkan aljabar biasa. Secara matematis, resultan dua buah vektor sejajar, yakni, sebagai berikut. Jika vektor A dan B searah, besar vektor resultan R, adalah
R = |A+B|         (1-1)
dengan arah vektor R sama dengan arah vektor A dan B. Sebaliknya, jika kedua vektor tersebut berlawanan, besar resultannya adalah
R = |A-B|         (1-2)
dengan arah vektor R sama dengan arah vektor yang terbesar.
2. Resultan Dua Vektor yang Saling Tegak Lurus
Misalnya, Anda memacu kendaraan Anda lurus ke timur sejauh 40 km dan kemudian berbelok tegak lurus menuju utara sejauh 30 km. Secara grafis, perpindahan Anda seperti diperlihatkan pada Gambar 5. 

Besar resultan perpindahannya, r, diperoleh menggunakan Dalil Pythagoras, yakni sebagai berikut :
dan arahnya

terhadap sumbu-x positif (atau 37° dari arah timur).
Dari contoh kasus tersebut, jika dua buah vektor, A dan B, yang saling tegak lurus akan menghasilkan vektor resultan, R, 
terhadap arah vektor A dengan catatan vektor B searah sumbu-y dan vektor A searah sumbu-x.
3. Resultan Dua Vektor yang Mengapit Sudut
Sekarang tinjau dua buah vektor, A dan B, yang satu sama lain mengapit sudut seperti yang diperlihatkan pada Gambar 6 (a). Gambar vektor resultannya dapat diperoleh dengan cara menempatkan pangkal vektor B di ujung vektor A. Selanjutnya, tarik garis dari titik pangkal vektor A ke titik ujung vektor B dan buatkan panah tepat di ujung yang berimpit dengan ujung vektor B. Vektor inilah, R, resultan dari vektor A dan B. Hasilnya seperti diperlihatkan pada Gambar 6 (b).

Besar vektor resultan, R, dapat ditentukan secara analitis sebagai berikut.
Perhatikan Gambar 7. Vektor C dan D diberikan sebagai alat bantu sehingga vektor A + C tegak lurus vektor D dan ketiganya membentuk resultan yang sama dengan resultan dari vektor A dan B, yakni R.

Dengan menggunakan Dalil Pythagoras, besarnya vektor resultan R adalah :

Selanjutnya, juga dengan menggunakan Dalil Pythagoras, dari gambar diperoleh :
C2 + D2 = B2
dan dari trigonometri,

Dengan memasukkan dua persamaan terakhir ke persamaan pertama, diperoleh besarnya vektor resultan R.
http://latex.codecogs.com/gif.latex?%5Cfn_jvn%20R=%5Csqrt%7B%5Cleft%20A%5E%7B2%7D+C%5E%7B2%7D+2ABcos%5Ctheta%20%7D        (1-5)
4. Selisih Dua Vektor yang Mengapit Sudut
Vektor A dan vektor -A, memiliki besar yang sama, yakni |A| = |–A| = A, tetapi arahnya berlawanan seperti diperlihatkan pada Gambar 8. 

Selisih dari dua buah vektor, misalnya vektor A – B, secara grafis sama dengan jumlah antara vektor A dan vektor –B, seperti diperlihatkan pada Gambar 9. 

Secara matematis, vektor selisihnya ditulis R = A – B.
Secara analitis, besar vektor selisihnya ditentukan dari Persamaan (1–5) dengan mengganti θ dengan 180–θ. Oleh karena, cos (180° – θ ) = –cosθ sehingga diperoleh :
  
Catatan Fisika :
cos (180 – θ ) = –cosθ. Hal ini dikarenakan cos (180 – θ) sama dengan cos(180) cosθ + sin (180) sin θ di mana nilai cos (180) = –1 dan nilai sin (180) = 0.Bagaimana jika cos (180 + θ )? Apakah sama dengan –cosθ ?

5. Melukis Resultan Beberapa Vektor dengan Metode Poligon
Jika terdapat tiga buah vektor, A, B, dan C, yang besar dan arahnya berbeda seperti diperlihatkan pada Gambar 10 (a), resultannya dapat diperoleh dengan cara menggunakan metode poligon, yakni sebagai berikut.
a. Hubungkan titik tangkap vektor B pada ujung vektor A dan titik pangkal vektor C pada ujung vektor B.
b. Buat vektor resultan, R, dengan titik tangkap sama dengan titik pangkal vektor A dan ujung panahnya tepat di titik ujung vektor C.
Hasilnya seperti diperlihatkan pada Gambar 10 (b).
Secara matematis, vektor resultan pada Gambar 10. ditulis sebagai berikut.
R = A + B + C



6. Vektor Nol
Vektor nol adalah vektor hasil penjumlahan beberapa buah vektor yang hasilnya nol. Sebagai contoh, lima buah vektor, A, B, C, D, dan E, menghasilkan resultan sama dengan nol maka secara matematis ditulis
A + B + C + D + E = 0
Dengan menggunakan metode poligon, secara grafis vektor-vektor tersebut diperlihatkan seperti pada Gambar 11. Perhatikan bahwa ujung vektor terakhir (vektor E) bertemu kembali dengan titik pangkal vektor pertama (vektor A).
Contoh Soal 1 :
Dua buah vektor satu sama lain membentuk sudut 60°. Besar kedua vektor tersebut sama, yakni 5 satuan. Tentukanlah :
a. resultan, dan
b. selisih kedua vektor tersebut.
Kunci Jawaban :
Misalnya, kedua vektor tersebut adalah A dan B. Besarnya, A = B = 5 dan sudutnya θ = 60°. Dengan menggunakan Persamaan (2–5) dan (2–6), diperoleh :
a. resultannya
b. selisihnya


Tidak ada komentar:

Posting Komentar

LATIHAN SOAL PERSIAPAN PENILAIAN TENGAH SEMESTER GANJIL

Nama                         : Rosmawati, S.Pd, Gr Mata Pelajaran   : Fisika Kelas                        :  XII